Skip to main content

ESP32-CAM Video Streaming with Arduino IDE

 

ESP32-CAM Video Streaming with Arduino IDE

This article is a quick getting started guide for the ESP32-CAM board. We’ll show you how to setup a video streaming web server with face recognition and detection in less than 5 minutes with Arduino IDE.



Note: in this tutorial we use the example from the arduino-esp32 library. This tutorial doesn’t cover how to modify the example.

Watch the Video Tutorial

You can watch the video tutorial or keep reading this page for the written instructions.

Parts Required

To follow this tutorial you need the following components:

Introducing the ESP32-CAM

The ESP32-CAM is a very small camera module with the ESP32-S chip that costs approximately $10. Besides the OV2640 camera, and several GPIOs to connect peripherals, it also features a microSD card slot that can be useful to store images taken with the camera or to store files to serve to clients.

The ESP32-CAM doesn’t come with a USB connector, so you need an FTDI programmer to upload code through the U0R and U0T pins (serial pins).

Features

Here is a list with the ESP32-CAM features:

  • The smallest 802.11b/g/n Wi-Fi BT SoC module
  • Low power 32-bit CPU,can also serve the application processor
  • Up to 160MHz clock speed, summary computing power up to 600 DMIPS
  • Built-in 520 KB SRAM, external 4MPSRAM
  • Supports UART/SPI/I2C/PWM/ADC/DAC
  • Support OV2640 and OV7670 cameras, built-in flash lamp
  • Support image WiFI upload
  • Support TF card
  • Supports multiple sleep modes
  • Embedded Lwip and FreeRTOS
  • Supports STA/AP/STA+AP operation mode
  • Support Smart Config/AirKiss technology
  • Support for serial port local and remote firmware upgrades (FOTA)

ESP32-CAM Pinout

The following figure shows the ESP32-CAM pinout (AI-Thinker module).

esp32-cam pinout ai-thinker module

There are three GND pins and two pins for power: either 3.3V or 5V.

GPIO 1 and GPIO 3 are the serial pins. You need these pins to upload code to your board. Additionally, GPIO 0 also plays an important role, since it determines whether the ESP32 is in flashing mode or not. When GPIO 0 is connected to GND, the ESP32 is in flashing mode.

The following pins are internally connected to the microSD card reader:

  • GPIO 14: CLK
  • GPIO 15: CMD
  • GPIO 2: Data 0
  • GPIO 4: Data 1 (also connected to the on-board LED)
  • GPIO 12: Data 2
  • GPIO 13: Data 3

Video Streaming Server

Follow the next steps to build a video streaming web server with the ESP32-CAM that you can access on your local network.

Important: Make sure you have your Arduino IDE updated as well as the latest version of the ESP32 add-on.

1. Install the ESP32 add-on

In this example, we use Arduino IDE to program the ESP32-CAM board. So, you need to have Arduino IDE installed as well as the ESP32 add-on. Follow the next tutorial to install the ESP32 add-on, if you haven’t already:

2. CameraWebServer Example Code

In your Arduino IDE, go to File Examples ESP32 Camera and open the CameraWebServer example.

ESP32-CAM in Arduino IDE CameraWebServer example

The following code should load.

ESP32 CameraWebServer Example

Before uploading the code, you need to insert your network credentials in the following variables:

const char* ssid = "REPLACE_WITH_YOUR_SSID";
const char* password = "REPLACE_WITH_YOUR_PASSWORD";

Then, make sure you select the right camera module. In this case, we’re using the AI-THINKER Model.

So, comment all the other models and uncomment the CAMERA_MODEL_AI_THINKER:

// Select camera model
//#define CAMERA_MODEL_WROVER_KIT
//#define CAMERA_MODEL_ESP_EYE
//#define CAMERA_MODEL_M5STACK_PSRAM
//#define CAMERA_MODEL_M5STACK_WIDE
#define CAMERA_MODEL_AI_THINKER

If none of the available options correspond to the camera you’re using, you need to add the pin assignment for your specific board in the camera_pins.h tab.

Now, the code is ready to be uploaded to your ESP32.

3. ESP32-CAM Upload Code

Connect the ESP32-CAM board to your computer using an FTDI programmer. Follow the next schematic diagram:

ESP32-CAM connected to an FTDI Programmer to upload program using Arduino IDE


Many FTDI programmers have a jumper that allows you to select 3.3V or 5V. Make sure the jumper is in the right place to select 5V.

Important: GPIO 0 needs to be connected to GND so that you’re able to upload code.

ESP32-CAMFTDI Programmer
GNDGND
5VVCC (5V)
U0RTX
U0TRX
GPIO 0GND

To upload the code, follow the next steps:

1) Go to Tools Board and select AI-Thinker ESP32-CAM.

2) Go to Tools Port and select the COM port the ESP32 is connected to.

3) Then, click the upload button to upload the code.

Arduino IDE 2 Upload Button

4) When you start to see some dots on the debugging window, you may need to press the ESP32-CAM on-board RST button if it doesn’t go automatically into flashing mode.

After a few seconds, the code should be successfully uploaded to your board.

Upload camerawebserver example arduino ide

Getting the IP address

After uploading the code, disconnect GPIO 0 from GND.

Open the Serial Monitor at a baud rate of 115200. Press the ESP32-CAM on-board Reset button.

The ESP32 IP address should be printed in the Serial Monitor.

Camerawebserver example get IP address Arduino IDE ESP32-CAM


Accessing the Video Streaming Server

Now, you can access your camera streaming server on your local network. Open a browser and type the ESP32-CAM IP address. Press the Start Streaming button to start video streaming.


You also have the option to take photos by clicking the Get Still button. Unfortunately, this example doesn’t save the photos, but you can modify it to use the on board microSD Card to store the captured photos.

Comments

popular posts

AX2358 Homemade 5.1 Remote Kit with 16x2 LCD

AX2358 Homemade 5.1 Remote Kit with 16x2 LCD                                               AX2358 is I used for this 5.1 remote kit project. It is Built-in 2-channel to 6-channel converter and 6-channel volume controller. It has 4 stereo inputs and one 6 channel input. Any stereo input terminals of AX2358 are selected, it will be directly converted to 6 channels and then output through volume adjustment but when the signal from the 6-channel input terminal is selected, it directly enters the volume adjustment and then outputs it without any processing. It has 6-channel individual volume control in this IC (0 to -79dB, 1dB/step). This IC working by I2C communication. The data are transmitted to the AX2358 via the SDA and SCL. So I need a microcontroller. I choose the microcontroller is Atmega328 for this. This microcontroller programmed with Arduino UNO.      ...

DIY Tutorial Resetting Toner Chip on Ricoh SP C250DN Printer in Simple Steps

  DIY Tutorial Resetting Toner Chip on Ricoh SP C250DN Printer in Simple Steps The RICOH SP 250DN printer toners have a chip that keeps track of the number of pages that have been printed. This is anoying because it will render a refill useless. In order to reuse this kind of toner, there are two things you need to do: refill the toner with ink (if needed) reset the toner chip (or replace it) There is plenty of information explaining how to refill the toner but little information on how to erase the toner chip. This document deals with the second point: how to dump the chip and reset it. It took me a while to get everything setup and to have my toner chip reset so I would like to share this process in order to help other to do the same with their printer toner cartridges. I will step through the process of understanding the problem, analysing the chip circuit, dumping the chip contents and writing back a pattern so the printer will be able to initialize the chip and set t...

DIY Metal Detector using Arduino A Simple Guide to Building Your Own at Home

  DIY Metal Detector using Arduino A Simple Guide to Building Your Own at Home How does a metal detector work? As we can see there are three things that are using to complete the whole project. Electronic circuit, Arduino, and a copper coil. here actually we are making a proximity sensor that detects the metal with a  metal detector  using Arduino . Here are the steps to build a DIY metal detector using an Arduino: Materials required: Arduino UNO Copper coil Diode 10nf capacitor Buzzer Led 220 ohm &  330 Ohm Resistor Jumper wires and a breadboard USB cable for uploading the code Circuit Diagram Arduino metal detector:-  Arduino UNO 10 nf Capacitor A2 Pin Terminal 1 GND Terminal 2 Arduino UNO Buzzer D6 Pin Positive GND  Negative Arduino LED 220 Ohm Resistor D5 Pin   Terminal 1   Anode Pin Terminal 2 GND Cathode Pin   Arduino UNO Copper coil Diode 330-ohm res   Terminal 1 Terminal 1 Terminal 1 A1 Pin     Terminal 2 A2 Pin ...

How to Calculate Inverter Battery Backup Time

  How to Calculate Inverter Battery Backup Time? Backup Time (in hours) = Battery Capacity (in Ah) X Input voltage (V) / Total Load (in Watts) Whenever you plan to buy an inverter battery, there is a desire to know some important information in your mind. Like how much will be the backup of the inverter battery, how many hours of backup will be available for how many ah batteries, etc. In this informative information, here you will know the backup time calculation formula.   Taking your inputs, you can calculate your total load, like: 3 tube led lights = 40 x 3 = 120 Watts 2 fans = 75 x 2 = 150 Watts 1 Bulb router = 1×20 Watts = 20 Watts So, the total load in your case is 120 + 150 + 20 = 290 Watts. Now, let us apply all these values in the above-said battery backup time formula.  Backup Time (in hours) = Battery Capacity (in Ah) X Input voltage (V) / Total Load (in Watts) Backup Time (in hours) = 150 x 12 / 290 = 6.2 So, your inverter battery will last around 6.2 hours ....

Wireless Joystick controlled Robot Car using Arduino, 433Mhz RF and L298N Motor Driver

    Wireless Joystick controlled Robot Car using Arduino – In this tutorial, you will learn how to control a Robot Car wirelessly using Arduino, L298N Motor driver, and  433 Mhz RF transmitter and Receiver . The robot control system can be activated and de-activated using the Built-in Joystick push Button. Arduino Uno Arduino Nano Mega 2560: Robot Car chassis kit: L298N motor driver: 2-Axis Analog Joystick 433 MHz Transmitter and Receiver Modules: DISCLAIMER: Please Note: these are affiliate links. I may make a commission if you buy the components through these links. I would appreciate your support in this way! wireless joystick Interfacing: Watch this tutorial for the robot parts assembling and connections. All the connections are exactly the same as explained in my previous tutorial. The only modification that I did is the addition of the 433 Mhz RF receiver module…the VCC pin of the receiver module is connected with the 5 volts…the ground pin of the ...