Skip to main content

Posts

Featured Post

How to Calculate Inverter Battery Backup Time

  How to Calculate Inverter Battery Backup Time? Backup Time (in hours) = Battery Capacity (in Ah) X Input voltage (V) / Total Load (in Watts) Whenever you plan to buy an inverter battery, there is a desire to know some important information in your mind. Like how much will be the backup of the inverter battery, how many hours of backup will be available for how many ah batteries, etc. In this informative information, here you will know the backup time calculation formula.   Taking your inputs, you can calculate your total load, like: 3 tube led lights = 40 x 3 = 120 Watts 2 fans = 75 x 2 = 150 Watts 1 Bulb router = 1×20 Watts = 20 Watts So, the total load in your case is 120 + 150 + 20 = 290 Watts. Now, let us apply all these values in the above-said battery backup time formula.  Backup Time (in hours) = Battery Capacity (in Ah) X Input voltage (V) / Total Load (in Watts) Backup Time (in hours) = 150 x 12 / 290 = 6.2 So, your inverter battery will last around 6.2 hours ....
Recent posts

ESP32-CAM Video Streaming with Arduino IDE

  ESP32-CAM Video Streaming with Arduino IDE This article is a quick getting started guide for the ESP32-CAM board. We’ll show you how to setup a video streaming web server with face recognition and detection in less than 5 minutes with Arduino IDE. Note:  in this tutorial we use the example from the arduino-esp32 library. This tutorial doesn’t cover how to modify the example. Watch the Video Tutorial You can watch the video tutorial or keep reading this page for the written instructions. Parts Required To follow this tutorial you need the following components: ESP32-CAM with OV2640  – read Best ESP32-CAM Dev Boards FTDI programmer Arduino Nano Female-to-female jumper wires Introducing the ESP32-CAM The ESP32-CAM is a very small camera module with the ESP32-S chip that costs approximately $10. Besides the OV2640 camera, and several GPIOs to connect peripherals, it also features a microSD card slot that can be useful to store images taken with the camera or ...

AX2358 Homemade 5.1 Remote Kit with 16x2 LCD

AX2358 Homemade 5.1 Remote Kit with 16x2 LCD                                               AX2358 is I used for this 5.1 remote kit project. It is Built-in 2-channel to 6-channel converter and 6-channel volume controller. It has 4 stereo inputs and one 6 channel input. Any stereo input terminals of AX2358 are selected, it will be directly converted to 6 channels and then output through volume adjustment but when the signal from the 6-channel input terminal is selected, it directly enters the volume adjustment and then outputs it without any processing. It has 6-channel individual volume control in this IC (0 to -79dB, 1dB/step). This IC working by I2C communication. The data are transmitted to the AX2358 via the SDA and SCL. So I need a microcontroller. I choose the microcontroller is Atmega328 for this. This microcontroller programmed with Arduino UNO.      ...